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In this paper, we are concerned about the limit behavior of the decay rate of variance of a passive and
diffusive scalar in a flow field as the diffusivity of the scalar goes to zero. Motivated by the concept of the fast
dynamo in the dynamo theory, we term a flow as fast mixer if the decay rate remains away from zero as the
diffusivity goes to zero. We first repeat numerical simulations with flow maps and velocity fields used in the
existing literature, including the lattice map, the 1D baker’s map, and the sinusoidal shear flow. Our simula-
tions shows that, in all cases, the decay rate tends to zero as the diffusivity goes to zero. For the closed flows
in a bounded domain, we then theoretically proved this result under certain plausible conditions on the flows.
For the open flows in the whole space, we show that the effective diffusivity matrix tends to zero in the limit
without the conditions for the closed flow. In conclusion, although a fast mixer might exist, it could be very
difficult to find one.
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I. INTRODUCTION

In the theory of fluid mixing, it is of practical interest to
understand the limit behavior of the decay rate of variance of
a passive and diffusive scalar in a flow field as the diffusivity
of the scalar goes to zero. The passive and diffusive scalar is
some physical entity, such as chemical pollutants dispersing
in the environment or dyes used in visualizing flow patterns,
which is immersed in the fluid flow and does not signifi-
cantly influence the fluid motion. The scalar undergoes two
processes, molecular diffusion and passive advection by the
flow.

The evolution of the scalar can be mathematically mod-
eled by the advection-diffusion equation

ct + � c · v = ��c �1�

in the absence of a source, where v�x , t� denotes a velocity
field on a bounded domain S in Rn, c�x , t� the concentration
of the scalar, and ��0 �cm2/s� the molecular diffusivity of
the scalar. Throughout the paper, we assume that v is incom-
pressible �� ·v=0�, and satisfies periodic, no-flow, or no-slip
boundary conditions on the boundary �S.

In the above model, the advection process and diffusion
process concur. However, for the need of investigation, these
two processes are sometimes separated into two phases and
described mathematically by two equations. For instance,
when Pierrehumbert �1� explored the mixing induced by the
map

xn+1 = xn + a sin�2��yn + �n�� �mod 1� , �2�

yn+1 = yn + cos�2��xn+1 + �n�� �mod 1� , �3�

where �n and �n are random variables uniformly distributed
over �0,1� and a is a constant, the mixing process was nu-
merically modeled in two phases. First, the map was used to
stir a scalar and rearrange its concentration c�x ,y ,n� by

c�xn+1,yn+1,n + 1� = c�xn,yn,n� , �4�

where �xn ,yn� varies across all grid points on a regular grid at
�n+1�th iteration. Then the diffusion process was realized by

cij
n+2 = �1 − ��cij

n+1 +
�

4
�ci+1,j

n+1 + ci−1,j
n+1 + ci,j+1

n+1 + ci,j−1
n+1 � , �5�

where cij
n =c�xi ,yj ,n� denotes the concentration on the regu-

lar grid at the nth iteration.
Another similar example is the mixing induced by the

one-dimensional baker’s map studied in �2�

xn = �xn+1/� if 0 � xn+1 	 � ,

�xn+1 − ��/�1 − �� if � � xn+1 � 1.
� �6�

For this mixing process, the scalar was stirred by the map at
time t=nT �T�0� through

c1�xn+1,nT� = �c�xn+1/�,nT� if 0 � xn+1 	 � ,

c��xn+1 − ��/�1 − ��,nT� if � � xn+1 � 1.
�
�7�

Between the times t=nT and �n+1�T, the diffusive process is
governed by the one-dimensional diffusion equation

�c

�t
= �

�2c

�x2 ,

c�x,nT� = c1�x,nT� . �8�

The model �1� should be different from the model �4� and
�5� or �7� and �8�. Indeed, the latter is not a discretized ver-
sion of the former and cannot be written in the form of �1�.
Since the advection and diffusion processes should concur in
practical problems, �1� could be a better model.

Motivated by the concept of the fast dynamo in the dy-
namo theory �see, e.g., �3��, we term a flow as fast mixer if
the decay rate remains away from zero as the diffusivity goes
to zero. It has become a controversial problem whether or
not there exists such a fast mixer.*Electronic address: liuweijiu@hotmail.com
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Efforts have been made to show the existence of a fast
mixer. Exploring the mixing induced by the lattice map �2�
and �3�, Pierrehumbert �1� observed that the variance decays
corresponding to two small diffusivites were very close and
then conjectured that the lattice map could be a fast mixer.
With the model �7� and �8�, Fereday et al. �3� approximately
computed the decay rates and observed that the value of the
decay rate is essentially independent of � in the small �
limit. Antonsen et al. �4� investigated a two-dimensional cha-
otic cosine flow and numerically showed that the flow is a
fast mixer.

On the other hand, there is also evidence showing that the
limit decay rate is zero. Generally speaking, finding such
evidence is easier than finding the evidence for the fast mixer
because large classes of flows are not fast mixers. Observing
logarithmic or power-law dependence on the diffusivity for
some three-dimensional steady flows, Toussaint et al. �5�
pointed out that such flows are in the class of zero limit.
Pikovsky and Popovych �6� showed that the largest eigen-
value 
 of the Frobenius-Perron operator induced by a cosine
flow map approaches 1 and then the decay rate ln 
 goes to
zero as the diffusivity tends to zero. Giona et al. �7,8� proved
that the eigenvalue �which is the decay rate� of the
advection-diffusion operator with a steady sine flow con-
verges to zero at the rate �� ���0�. For open flows in an
unbounded domain, Fannjiang and Papanicolaou �9� showed
that the effective diffusivity is proportional to the square root
of the diffusivity.

In this paper, we first repeat numerical simulations with
flow maps and velocity fields used in the existing literature
in Sec. III, including the lattice map �2� and �3� �see �1��, the
1D baker’s map �6� �see �2,10��, and the sinusoidal shear
flow �see, e.g., �4,11��. Our simulations show that, in all
cases, the decay rate tends to zero as �→0. Then in Sec. IV,
this result is theoretically proved under certain plausible con-
ditions on the closed flows in a bounded domain. For the
open flows in the whole space, we show that the effective
diffusivity matrix tends to zero in the limit without the con-
ditions for the closed flow. In conclusion, although a fast
mixer might exist, it could be very difficult to find one.

II. DEFINITION AND PROPERTIES OF DECAY
RATE

Consider now a diffusive scalar c�x , t� on a bounded do-
main S of two- or three-dimensional spaces. For simplicity,
we assume the zero mean concentration

�c� = 	
S

c�x,t�dA = 0.

Mathematically we assume that the evolution of the scalar is
governed by either the original advection-diffusion equation
�1� or the simplified models such as the lattice model �4� and
�5� and the 1D bakers model �6�–�8�.

In general, the concentration c�x , t� depends on the diffu-
sivity � and initial concentrations c0�x�. In what follows,
when we address the problem of its dependence on � and c0,
we will explicitly write it as c�x , t ;� ,c0� or c��x , t ;c0�. Oth-

erwise, we always suppress the � or c0 for brevity.
To motivate us to define the decay rate of variance of the

scalar, we first look at the special case of the time-periodic
velocity v�x , t�. In this case, we showed in �12� that the so-
lution c of �1� with an initial concentration c0�x� can be
expanded in terms of eigenmodes as follows:

c�x,t;�,c0� = 

k=1

N

e
ktek�x,t;�,c0� + R�x,t;�,c0� , �9�

where 
k=
k�� ,c0� are Floquet exponents with the corre-
sponding eigenmodes ek�x , t ;� ,c0� and the remainder
R�x , t ;� ,c0� is small. By eigenmodes here we mean that
ek�x , t ;� ,c0� has the following form:

ek�x,t;�,c0� = c0�x,t;�,c0� + tc1�x,t;�,c0� + ¯

+ tl�k�cl�k��x,t;�,c0�

and e
ktek�x , t ;� ,c0� is a solution of �1�, where l�k��0 is a
non-negative integer, and ci�x , t ;� ,c0� are continuous time-
periodic functions. Let 
1 be the Floquet exponent with the
largest real part. It then follows from �9� that

c�x,t;�,c0� = e
1ttnF�x,t;�,c0� ,

where n is a non-negative integer and the L2 norm of F is
bounded over t� �1,��. Taking the L2 norm of the above, we
obtain that

Re�
1��,c0�� = lim
t→�

1

t
ln�c�t;�,c0��2 − lim

t→�

1

t
ln tn

− lim
t→�

1

t
ln�F�t;�,c0��2

= lim
t→�

1

t
ln�c�t;�,c0��2,

where

�c�t;�,c0��2
2 = 	

S

�c�x,t;�,c0��2dA .

Thus the decay rate corresponding to the initial concentration
c0 in this case, denoted by �� ,c0�, is equal to

��,c0� = − Re�
1� = − lim
t→�

1

t
ln�c�t;�,c0��2.

For general velocities, the above limit may not exist. Thus
we define the decay rate corresponding to the initial concen-
tration c0 in general cases by

��,c0� = − lim sup
t→�

1

t − t0
ln

�c�t;�,c0��2

�c0�2
. �10�

Here we have divided �c�t ;� ,c0��2 by �c0�2 to normalize the
c. The decay rate of the scalar field is defined by

���� = inf
c0

��,c0� . �11�

In what follows, when we address the problem of depen-
dence of  on � or c0, we will explicitly write  as a function
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�� ,c0� of � and c0. Otherwise, we always suppress the � or
c0 for brevity.

In computation, the rate can be calculated by the follow-
ing approximate formula:

�t� = −
1

t − t0
ln

�c�t��2

�c0�2
, t large. �12�

To get an accurate value of , we should take t to be so large
that �t� has reached a steady state. But the time t should not
be too large since �c�t��2 may become constant after the sca-
lar field has been transited to the steady state at some large
time T and then

−
1

t − t0
ln

�c�t��2

�c0�2

may go to zero if t→�. Therefore, we should carefully
choose an appropriate t in computation.

The following property could explain why the number 
defined in �10� is called the decay rate.

Proposition 2.1: For any ��0, there exists a positive con-
stant M��� such that

�c�t��2 � M����c0�2 exp��� − ��t − t0�� for all t � t0.

�13�

Proof: By the definition �10�, there exists T=T��� such
that

sup
t�T

1

t − t0
ln

�c�t��2

�c0�2
� −  + � ,

which implies that

�c�t��2 � �c0�2 exp��� − ��t − t0�� for all t � T .

We define

B��� = sup
t0	t�T

1

t − t0
ln

�c�t��2

�c0�2
.

Although the above expression is singular at t= t0, B��� is
finite and negative since �c�t��2� �c0�2 due to the diffusion.
We then deduce that

�c�t��2 � �c0�2 exp�B����t − t0��

= exp�B��� − � + ��t − t0���c0�2 exp�� − ��t − t0��

for all t0 � t � T .

It therefore follows that �13� holds with

M��� = max1, sup
t0�t�T���

exp„�B��� − � + ��t − t0�…� .

�14�

Generally speaking, the constant M��� may go to infinity
as �→0. For instance, let us consider the simple function
f�t�=e−t+�t. Evidently, its decay rate  is equal to 1. Since

f�t� = e�t−�te��−1�t,

we have

M��� = sup
0�t��

e�t−�t = e1/�4��,

which converges to infinity as �→0. However, there are
many functions such that the constant M��� is uniformly
bounded �→0, for example, f�t�=e−t+1.

The uniform boundedness of M��� plays an important role
in the fast mixer problem. Since the number � in �13� is
arbitrary, we can replace it by the diffusivity �. If M��� is
uniformly bounded as �→0, we will be able to prove that
the decay rate ��� converges to zero as �→0 in Sec. IV.
Hence, the study of such uniform boundedness becomes
crucial.

For the pure diffusion processes without advection by a
flow, it is well known that the decay rate � is equal to the
smallest eigenvalue of the Laplacian −�� and M���=1 is
independent of �. If the advection is present, numerical
simulations in Sec. IV show that there may be many flows
and maps like 1D baker’s maps such that M��� is uniformly
bounded �see Figs. 7 and 8 below�. However, their theoreti-
cal proofs are open and could be difficult.

The following property shows that the decay rate  is the
largest number 
 such that there exists a positive constant M
such that

�c�t��2 � M�c0�2 exp�− 
�t − t0�� for all t � t0

holds.
Proposition 2.2: For the decay rate defined in (10) we

have

 = sup�
�sup
t�t0

e
�t−t0� �c�t��2

�c0�2
	 �� . �15�

Proof: Denote

� = �
�sup
t�t0

e
�t−t0� �c�t��2

�c0�2
	 �� .

By �13�, we have −��� for any ��0 and then 
�sup �. On the other hand, for any ��0, there exists T0
=T0��� such that

sup
t�T

1

t − t0
ln

�c�t��2

�c0�2
� −  − �, for all T � T0,

which implies that there exists tn→� such that

1

tn − t0
ln

�c�tn��2

�c0�2
� −  − � ,

and then

e�+2���tn−t0� �c�t��2

�c0�2
� e��tn−t0�.

This shows that +2��� and then �sup �. Therefore
�15� holds.

In the above discussions, the scalar does not need to
evolve according to the advection-diffusion equation �1�.
However, if it follows the equation, then we can show that its
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decay rate is greater than the smallest eigenvalue of the La-
placian −��. For this, we complete the equation with initial
and boundary conditions as follows:

ct + � c · v = ��c ,

c�x,t0� = c0�x� ,

� �c

�n
�

�S
= 0 �16�

with c0�x� denoting the initial concentration at t= t0, and with
�c /�n��S referring to the normal derivative of c along the
boundary �S. In this paper, we fix the above Neumann
boundary condition for concreteness, but our results in this
paper are equally valid for Dirichlet or spatially periodic
boundary conditions.

Proposition 2.3: If the diffusive scalar c�x , t� evolves ac-
cording to the problem (16), then the decay rate satisfies �
���1, where the constant �1 is the smallest eigenvalue of
the Laplacian −� with the boundary condition in (16).

Proof: Multiplying �16� by c and integrating over the do-
main S gives the well-known result

1

2

d

dt
�c�2

2 = − �� � c�2
2. �17�

Applying the Poincaré inequality

�1�c�2 � � � c�2, �18�

we obtain the estimate

�c�x,t��2
2 � �c0�2

2e−2��1�t−t0�, �19�

where the constant �1 is the smallest eigenvalue of the La-
placian −�. It therefore follows that

ln
�c�t��2

�c0�2
� − ��1�t − t0� ,

which implies that �c0����1 for all c0 and then ����1.
The numerical simulations in the next section will show

that the decay rate �c0� for some c0 is indeed much greater
than the smallest eigenvalue of the Laplacian −�� if the
scalar field is well stirred by a flow, that is, mixing is en-
hanced. Although the decay rate � is equal to infc0�c0��, it
is quite possible that � is also greater than the smallest ei-
genvalue.

III. NUMERICAL EXAMPLES

In this section, we repeat numerical simulations with flow
maps and velocity fields used in the existing literature, in-
cluding the lattice map �2� and �3� �see �1��, the 1D baker’s
map �6� �see �2,10��, and the sinusoidal shear flow �see, e.g.,
�4,11��. Our simulations show that, in all cases, the decay
rate �� ,c0� for some c0 tends to zero as �→0, and so does
the decay rate ���� since it is equal to infc0�� ,c0��. We
start with the lattice map.

A. Pierrehumbert’s sine-cosine map

The flow map �2� and �3� was first proposed by Pierrehu-
mbert in �1� and used in �4,13�. In our simulation here, we
use the same numerical scheme �4� and �5�.

In order to see whether or not our simulation results
change when the space grid size is varied, we consider two
different grids of the unit square �0,1�� �0,1�. One grid has
200�200 grid points and the other has 300�300 ones. On
these grids, the concentration c is first rearranged by the map
�2� and �3� through �4� and then undergoes the diffusion
process through �5�.

To see the effect of small random disturbances on the
decay rate, we consider both randomized and unrandomized
maps.

In our computations, we take the same value a=4 and the
same initial condition c0�x ,y�=cos�2�x�cos�2�y� as in �1�.
We simulate the decay rates for 21 different diffusivities
� �cm2/s� ranging from 0 to 0.2 with the even spacing of
1/20 �cm/s�. For each diffusivity �, 40 iterations are run.
The approximate decay rate ��� is computed by the formula
�12�.

In Fig. 1, the solid, dotted-dashed, dashed, and dotted
curves stand for the simulated rates in the cases of the grid
sizes 1 /300, 1 /200 without random disturbances, 1 /300, and
1/200 with random disturbances, respectively. This figure
clearly shows that ���→0 as �→0 in all cases. From the
figure, we can also see that there are no big differences be-
tween the randomized and unrandomized maps and no big
changes when the grid size is varied, especially for the small
diffusivity.

B. 1D baker’s map

The 1D baker’s map �see �2,10�� is defined by �6�. In our
simulation here we use the same numerical scheme �6�–�8�.
The diffusion equation �8� is considered on the unit interval
�0,1� with periodic boundary conditions. Then the concentra-
tion c can be expressed by the following Fourier series:

FIG. 1. �Color online� Decay rate of variance for the mixing
induced by the map �2� and �3� with a=4. The solid, dotted-dashed,
dashed, and dotted curves stand for the simulated rates in the cases
of the grid sizes 1 /300, 1 /200 without random disturbances, 1 /300,
and 1/200 with random disturbances, respectively. The decay rates
are simulated for 21 different diffusivities ��cm2/s� ranging from 0
to 0.2 with the even spacing of 1/20 �cm2/s�.
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c�x,t� = a0 + 

n=1

�

e−4�n2�2t�an cos�2n�x� + bn sin�2n�x�� .

�20�

According to the numerical scheme �6�–�8�, the scalar field is
advected by the map at every interval of time T, and then,
between the advection of the map, the scalar field evolves
according to the above series.

We compute the decay rates for four different �
=0.1,0.2,0.3,0.4 and six different small diffusivities �
=0,10−9 ,10−8 ,10−7 ,10−6 ,10−5 �cm2/s� as shown in Fig. 2,
especially the zero diffusivity being included for the reason
we will explain below. In our computations, we take the
period T=1 and the initial condition c0�x�=sin�2�x�. The
series is truncated at N=800, the interval �0,1� is divided into
3000 subintervals for numerical integrations of the Fourier
coefficients, and the approximate decay rate ��� is com-
puted by the formula �12�.

To compare our result with the one in �2�, we notice that,
instead of computing , the eigenvalue � of a truncated
transfer matrix with the largest modulus was calculated in �2�
and the relation between  and � is =−ln���. Therefore, we
plot ���=e−, instead of , in Fig. 2. With this in mind, it can
been seen from the figure that our result is very close to the
one obtained in �2� and the decay rate  converges to a
positive number ����=e− converges to a positive number
less than 1� in the cases of �=0.2,0.3,0.4, respectively.

However, this does not prove that the 1D baker’s map is a
fast mixer. To see this, we have particularly computed the
decay rate in the case of zero diffusivity by using the same
procedure for the nonzero diffusivities, that is, before the
concentration c�x , i� is advected by the map at the time t= i
+1, c is expanded as the Fourier series

c�x,i + 1�

= a0 + 

n=1

N

e−4�0�n2�2�i+1��an cos�2n�x� + bn sin�2n�x��

= a0 + 

n=1

N

�an cos�2n�x� + bn sin�2n�x�� , �21�

where a0, an, and bn are the Fourier coefficients of c�x , i�.
Following this procedure, we obtain a positive rate ��0
while ���=e−	1� for the zero diffusivity as shown in Fig.
2. However, this positive rate is certainly wrong because the
rate in this case should be equal to zero. In fact, if the diffu-
sivity is zero, then the scalar field should not undergo the
diffusion process. So c�x , i� is advected immediately by the
map at the time t= i+1 without expanding it as in �21�. If we
do so, we do obtain the zero rates for �=0.1,0.2,0.3,0.4, as
indicated by “Conservative” in Fig. 3, since the baker’s map
is mass-preserved. In this figure, �=0 and “Conservative”
indicates that the factor is computed without the use of Fou-
rier series �20� while it is used in other cases. Therefore, this
positive rate should be the result of the truncation errors and
numerical integration errors in the Fourier expansion in
�21�. To see this, we truncate the series at N
=100,200,400,600,800,1000. Figure 3 shows that the rate
 is decreasing �e− increasing� as N increases.

Furthermore, Fig. 2 suggests that ��� may be a continu-
ous function of � since �10−9� is almost equal to �0�. If
this is really true, then we have ���→�0�=0 as �→0.

To further confirm that the limit of rate should be zero, we
discretize the diffusion equation �8� by central difference in
space and the forward difference in time. It is well known
that for small diffusivities this scheme is stable and the so-
lution of the difference equation converges to the exact so-
lution of the diffusion equation �see, e.g., �14��. In the com-
putation, the time step is 0.001 and the space grid size is
0.0001. We consider eleven different small diffusivities
�=0,10−14,10−13,10−12,10−11,10−10,10−9,10−8,10−7,10−6,
10−5 �cm2/s�. Figure 4 shows that ���→0 as �→0.

To verify the theoretical result of Proposition 2.3 �strictly
speaking, it cannot be applied to this case because it was
proved for only model �16�� and see that the 1D baker’s map
greatly enhances mixing, we simulate the decay rates for �
=0.1,0.2,0.3,0.4 and plot them as functions of � in Fig. 5. It
is well known that the largest eigenvalue of the Laplacian
operator �2 /�x2 with periodic boundary conditions on �0,1� is
−�2. We plot the function =�2� in Fig. 5 to compare with
the simulated decay rates. The figure clearly shows that the
decay rate of the stirred scalar is much greater than ��2. As

FIG. 2. �Color online� Decay factor ���=e− of variance of the
mixing induced by the 1D baker’s map �6� as a function of � for six
different small diffusivities �=0,10−9,10−8,10−7,10−6,10−5�cm2/s�.
These factors are computed with the use of Fourier series �20�.

FIG. 3. �Color online� Decay factor ���=e− of variance of the
mixing induced by the 1D baker’s map �6� as a function of � for
different truncations N=100,200,400,600,800,1000, with �
=0 �cm2/s�. “Conservative” indicates that the factor is computed
without the use of Fourier series �20� while it is used in other cases.
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we discussed in �12�,  actually is the eigenvalue of the
Laplacian operator plus the map. Therefore, the map greatly
shifts the original eigenvalue −��2 to the left −.

C. Sinusoidal shear flow

The sinusoidal shear flow �see, e.g., �4,11�� is defined by

v1�x,y,n + t� = �U sin�2��y + �n�� , 0 	 t 	 0.5,

0, 0.5 	 t 	 1,
�

�22�

v2�x,y,n + t� = �0, 0 	 t 	 0.5,

U sin�2��x + �n�� , 0.5 	 t 	 1,
�

�23�

where �n and �n are random variable uniformly distributed
over �0,1� and U is a constant. In our simulation here the
velocity is not randomized, that is, �n=�n=0, U=1, and the
initial condition is c0�x ,y�=sin�2�x�.

The advection-diffusion equation �16� with periodic
boundary conditions on the unit square �0,1�� �0,1� is

solved by using the finite element method codes developed
in �15� �with some modifications for this particular problem�.
The mesh of four-node isoparametric quadrilateral elements
is used and the codes are run twice with different mesh sizes
0.1 and 0.05.

In the case of the mesh size 0.1, it can be seen from Fig.
6 that it seems that ��� converges to a positive number as
�→0. However, if the mesh is refined, then it looks like
��� really converges to 0 as �→0.

As in the case of the 1D baker’s map, the sine shear flow
also enhances mixing greatly. We plot the line =�2� in the
figure and we can see that the simulated decay rates are
much greater than ��2, the eigenvalue of the Laplacian op-
erator

− �� �2

�x2 +
�2

�y2� .

Such enhancement does not contradict with the fact that
the enhanced rate may still go to zero as �→0. In fact, this
will be proved theoretically in the next section under certain
plausible conditions on the flows.

IV. ANALYTIC RESULTS

In this section, we prove analytically that the decay rate
tends to zero as �→0 under some reasonable conditions on
the flows. We note that once we can show that �� ,c0�→0
for some initial concentration c0, then ����→0 due to
������� ,c0�. We consider flows in both bounded and un-
bounded domains.

A. Flows in bounded domains

Consider the advection-diffusion equation with a source
term f�x , t� on a bounded domain S in Rn

ct + � c · v = ��c + f�x,t� ,

c�x,t0� = c0�x� ,

� �c

�n
�

�S
= 0. �24�

Here we fix the Neumann boundary condition ���c /�n���S

=0 for concreteness, but our results below are equally valid

FIG. 4. �Color online� Decay factor ���=e− of variance of the
mixing induced by the 1D baker’s map �6� as a function of � for
eleven different small diffusivities �=0,10−14,10−13,10−12,10−11,
10−10,10−9,10−8,10−7,10−6,10−5 �cm2/s�. These factors are com-
puted by using the finite difference method.

FIG. 5. �Color online� Decay rates  of variance of the mixing
induced by the 1D baker’s map �6� as a function of � �cm2/s� for
�=0.1,0.2,0.3,0.4. These rates are computed by using the finite
difference method.

FIG. 6. �Color online� Decay rates of variance for the mixing
induced by the sine shear flow �22� and �23� with U=1.
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for Dirichlet or spatially periodic boundary conditions.
In what follows, Hn�S� �n=0,1 ,2 , . . . � denotes the usual

Sobolev space �see, e.g., �16��, which consists of all func-
tions that n time differentiable in the sense of distribution
and whose up to nth order derivatives are square-integrable.

We first show that the diffusive scalar converges to the
conservative scalar as �→0.

Theorem 4.1: Suppose that the velocity v and the source
f have bounded gradients over S and the initial condition
c0�H1�S�. Then the solution c�x , t ;�� of (26) has the follow-
ing properties:

(i) For any T�0 and �0�0, the set c�x , t ;�� �0	�
��0� is bounded in C��t0 ,T� ;H1�S��.

(ii) As �→0, the solution c�x , t ;�� converges star-weakly
in C�t0 ,T� ;H1�S�� to the solution c̄�x , t� of the conservative
equation

c̄t + � c̄ · v = f , �25�

c̄�x,t0� = c0�x�, c̄�x,T� = cT�x� , �26�

where cT�x�=lim�→0 c�x ,T ;�� weakly in H1�S� and strongly
in L2�S�.

Proof:
�i� The boundedness is the result of Proposition 2 of �12�.
�ii� From �i� it follows that there exists a sequence

cn�x , t�=c�x , t ;�n� such that cn converge to c̄ star-weakly in
C�t0 ,T� ;H1�S��, that is

lim
n→�

	
t0

T 	
S

� cn � gdAdt

= lim
n→�

	
t0

T 	
S

� c̄ � gdAdt

for every g � L1�t0,T�;H1�S�� .

Multiplying �24� by g and integrating by parts over S
� �t0 ,T�, we obtain

	
S

�cn�x,T�g�x,T� − c0�x�g�x,t0��dA

+ 	
t0

T 	
S

�− cngt + g � cn · v�dAdt

= − �n	
t0

T 	
S

� cn � gdAdt + 	
t0

T 	
S

fgdAdt . �27�

Since cn�x ,T� are bounded in H1�S�, there exists a subse-
quence, still denoted by cn�x ,T��, such that cn�x ,T� con-
verge to cT�x� weakly in H1�S� and strongly in L2�S�. Taking
the limit as n→� in the above equation gives

	
S

�cT�x�g�x,T� − c0�x�g�x,t0��dA − 	
t0

T 	
S

c̄gtdAdt

+ 	
t0

T 	
S

g � c̄ · vdAdt = 	
t0

T 	
S

fgdAdt . �28�

Taking g�x , t0�=g�x ,T�=0, we deduce that

c̄t + � c̄ · v = f

in the sense of distribution. It then follows from �28� that

	
S

�cT�x� − c̄�x,T��g�x,T�dA + 	
S

�c̄�x,t0� − c0�x��g�x,t0�dA

= 0. �29�

Taking g�x ,T�=0, we obtain

c̄�x,t0� = c0�x� . �30�

Taking g�x , t0�=0, we obtain

c̄�x,T� = cT�x� . �31�

This completes the proof.
To derive a reasonable condition on flows, we note that,

by Proposition 2.1, there exists a positive constant M�� ,c0�
such that

�c�t,���2 � M��,c0��c0�2 exp�� − �����t − t0�� �32�

for all t� t0. Therefore, the constant

M*��,c0� = sup
t�t0

e����−���t−t0� �c�t,���2

�c0�2
� M��,c0� 	 � ,

�33�

and �32� is still true if M�� ,c0� is replaced by M*�� ,c0�. As
we discussed in Sec. II, M*�� ,c0� may not be uniformly
bounded as �→0. If we assume that it is so, then we can
show the decay rate �� ,c0�→0 as �→0. Therefore, the
boundedness of M*�� ,c0� becomes a crucial problem.

Before we prove this result, it is useful to check whether
or not such assumption is reasonable. Since it is difficult to
prove it analytically, we appeal to numerical results. We first
look at the mixing induced by 1D baker’s map with �=0.4
and solve the mixing problem numerically as in Sec. III B.
This time the initial condition is the same, but the more
realistic homogeneous Neumann boundary conditions are
used. The bound M*�� ,c0� is approximately computed by the
formula

M*��,c0,T� = sup
t0�t�T

�c�t,���2

�c0�2
exp���,c0,T� − ���t − t0�� ,

�34�

��,c0,T� = −
1

T − t0
ln

�c�T,���2

�c0�2
. �35�

From Fig. 7, we can see that M*�� ,c0 ,T� should be uni-
formly bounded as �→0 since the values of M* at small �
from 10−11 to 10−15 are almost the same. Also, M* is almost
constant in T after T=20. This shows that T=20 would be
large enough to obtain the correct approximation of M*.

We now look at another example

v1�x,y,t� = �sin��x�cos��y� if n � t 	 n + 0.5,

− sin�2�x�cos��y� if n + 0.5 � t 	 n + 1,
�

DOES A FAST MIXER REALLY EXIST? PHYSICAL REVIEW E 72, 016312 �2005�

016312-7



v2�x,y,t� = �− cos��x�sin��y� if n � t 	 n + 0.5,

2 cos�2�x�sin��y� if n + 0.5 � t 	 n + 1.
�

�36�

Using the finite element method �with mesh size 0.05� as in
Sec. III C, we solve Eq. �16� with Neumann boundary con-
ditions and the initial concentration

c0�x,y� = �1 if 0 � x � 1/2 and 0 � y � 1,

0 if 1/2 	 x � 1 and 0 � y � 1.
�

Figure 8 shows that the situation here is the same as in the
case of the 1D baker’s map and M*��� is uniformly bounded
in the limit.

These numerical results could suggest that a large classes
of flows have the uniform boundedness property.

Theorem 4.2: Suppose that the velocity v has bounded
gradients over S. If v is a velocity field such that the bound
M*�� ,c0� for some initial condition c0�H1�S� is uniformly
bounded as �→0, then the decay rate �� ,c0� of the solu-
tion c of �16� tends to zero as �→0.

Proof: We argue by contradiction. Suppose that 0
=inf��0�� ,c0��0. By �32�, we have

�c�t;���2 � M*����c0�2 exp�� − �����t − t0�� for all t

� t0. �37�

Letting �→0, we deduce from part �ii� of Theorem 4.1 that

�c̄�t��2 � M0�c0�2 exp�0�t0 − t�� for all t � t0, �38�

where M0=sup0	���0
M*��� and �0�0. This is in contradic-

tion with the conservation of the solution c̄ since t can be
arbitrarily large.

B. Flows in unbounded domains

For the flows in an unbounded domain S=Rn, we seek to
describe the large time and long-distance behavior of the
evolution of the passive scalar governed by Eq. �1�. There-
fore we introduce a small parameter � and the scaling of
variables

t =
s

�2 , x =
y

�
,

and denote c�
��y ,s�=�−nc��y /� ,s /�2�. The subscript � indi-

cates that c� is the solution of �1� corresponding to the dif-
fusivity �. It then follows from �1� that

�c�
�

�s
+ �−1v�y

�
,

s

�2� · � c�
� = ��c�

� . �39�

In this section, we assume that the velocity v satisfies the
periodic boundary condition

v�x + Le,t� = v�x,t� ,

v�x,t + T� = v�x,t� , �40�

where L ,T are the periods and e is any integer vector. We
consider the above equation on a cube � of side L in Rn.

Majda and Kramer �17� derived the following homog-
enized effective diffusion equation of �39�

�c�
*

�s
= 


i,j=1

n

aij
� �2c�

*

�yi�yj
,

c�
*�y,0� = c0�y� , �41�

where ��
i =��

i �z ,�� are spatial L-periodic and time T-periodic
solutions of

���
i

��
+ v�z,�� · �z��

i = ��z��
i − vi�z,��, i = 1,2, . . . ,n ,

�42�

vi is the ith component of v, and

aij
� = ��ij −

1

2Tmes���	0

T 	
�

���
i v j�z,�� + ��

j vi�z,���dzd� ,

�ij = �1, i = j ,

0, i � j .
�

The matrix A�= �aij
�� is called effective diffusivity matrix of

�1�. It can be written as

FIG. 7. �Color online� The bound M*�� ,T� for the 1D baker’s
map ��=0.4� defined by �6�, with the diffusivities �
=10−15, . . . ,10−8 �cm2/s�. The unit of the time T is s.

FIG. 8. �Color online� The bound M*�� ,T� for the flow defined
by �36�, with the diffusivities �=0.0001, . . . ,0.001 �cm2/s�. The
unit of the time T is s.
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A� = �I + ��,

where I is the identity matrix and ��= ���
ij� with

��
ij = −

1

2Tmes���	0

T 	
�

���
i v j�z,�� + ��

j vi�z,���dzd� .

Since the matrix �� is non-negative-definite, it is referred as
convection-enhanced diffusivity matrix in �17�, which repre-
sents the additional diffusivity due to the flow.

It was rigorously proved in �17�. that the rescaled scalar
field c�

��y ,s� converges to c�
*�y ,s� in the following sense:

lim
�→0

sup
t0�s�T

sup
y�Rn

�c�
��y,s� − c�

*�y,s�� = 0

for every finite T�0, provided that c0�y� and v satisfy some
mild smoothness and boundedness conditions.

Using Theorem 4.1, we want to show that the effective
diffusivity matrix A� tends to zero as �→0.

Theorem 4.3: Suppose that the velocity v has bounded
gradients over Rn. Then the effective diffusivity matrix A�

tends to zero as �→0.
Proof: Applying Theorem 4.1 to Eq. �42�, we deduce that

aij = lim
�→0

aij
�

= lim
�→0

���ij −
1

2Tmes���

�	
0

T 	
�

���
i v j�z,�� + ��

j vi�z,���dzd��
= −

1

2Tmes���	0

T 	
�

��iv j�z,�� + � jvi�z,���dzd� ,

where �i is the solution of

��i

��
+ v�z,�� · �z�

i = − vi�z,��, i = 1,2, . . . ,n .

Multiplying the equation by � j and integrating over �
� �0,T�, we obtain

	
0

T 	
�

��iv j�z,�� + � jvi�z,���dzd� = 0.

Hence aij =0. This completes the proof.

V. CONCLUSIONS

We have discussed the limit behavior of the decay rate of
variance of a passive and diffusive scalar in a flow field as
the diffusivity of the scalar goes to zero. Motivated by the
concept of the fast dynamo in the dynamo theory, we have
defined a flow as fast mixer if the decay rate remains away
from zero as the diffusivity goes to zero. We repeated nu-
merical simulations with flow maps and velocity fields used
in the existing literature, including the lattice map �2� and �3�
�see �1��, the 1D baker’s map �6� �see �2,10��, and the sinu-
soidal shear flow �see, e.g., �4,11��. Our simulations showed
that, in all cases, the decay rate tends to zero as �→0. This
result has been theoretically proved for the flows in a
bounded domain if the flow is such that the constants M*���
in the following inequality are uniformly bounded as �→0

�c�t;���2 � M*����c0�2 exp�� − �����t − t0�� for all t � t0.

For the open flows in the whole space, we showed that the
effective diffusivity matrix tends to zero in the limit without
the above conditions for the closed flow. In conclusion, al-
though a fast mixer might exist, it could be very difficult to
find one.

To completely solve the fast mixer problem, the study of
the boundedness of M*��� becomes crucial. With the 1D
baker’s map and the sine-cosine shear flow we numerically
showed that such boundedness is possible and then it could
be plausible to guess so for most other velocity fields. But it
is challenging problem to find conditions on a velocity field
such that the above boundedness holds.
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